Tutorial for the WGCNA package for R II. Consensus network analysis of liver expression data, female and male mice 4. Relating consensus modules to external microarray sample information and exporting network analysis results

نویسندگان

  • Peter Langfelder
  • Steve Horvath
چکیده

# Display the current working directory getwd(); # If necessary, change the path below to the directory where the data files are stored. # "." means current directory. On Windows use a forward slash / instead of the usual \. workingDir = "."; setwd(workingDir); # Load the WGCNA package library(WGCNA) # The following setting is important, do not omit. options(stringsAsFactors = FALSE); # Load the data saved in the first part lnames = load(file = "Consensus-dataInput.RData"); #The variable lnames contains the names of loaded variables. lnames # Also load results of network analysis lnames = load(file = "Consensus-NetworkConstruction-auto.RData"); lnames exprSize = checkSets(multiExpr); nSets = exprSize$nSets;

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tutorial for the WGCNA package for R II. Consensus network analysis of liver expression data, female and male mice 2.c Dealing with large data sets: block-wise network construction and consensus module detection

2 Network construction and module detection 2 2.a Automatic block-wise network construction and consensus module detection . . . . . . . . . . . . 2 2.a.1 Choosing the soft-thresholding power: analysis of network topology . . . . . . . . . . . . . . 2 2.a.2 Block-wise network construction and consensus module detection . . . . . . . . . . . . . . . 3 2.a.3 Comparing the block-wise and standard ...

متن کامل

Tutorial for the WGCNA package for R: I. Network analysis of liver expression data in female mice 3. Relating modules to external information and identifying important genes

3 Relating modules to external clinical traits 2 3.a Quantifying module–trait associations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3.b Gene relationship to trait and important modules: Gene Significance and Module Membership . . . . 2 3.c Intramodular analysis: identifying genes with high GS and MM . . . . . . . . . . . . . . . . . . . . . . 3 3.d Summary outpu...

متن کامل

Corrected R code from chapter 12 of the book

Integrated weighted correlation network analysis of mouse liver gene expression data Chapter 12 and this R software tutorial describe a case study for carrying out an integrated weighted correlation network analysis of mouse gene expression, sample trait, and genetic marker data. It describes how to i) use sample networks (signed correlation networks) for detecting outlying observations, ii) fi...

متن کامل

Tutorials for the WGCNA package for R: WGCNA Background and glossary

WGCNA begins with the understanding that the information captured by microarray experiments is far richer than a list of differentially expressed genes. Rather, microarray data are more completely represented by considering the relationships between measured transcripts, which can be assessed by pair-wise correlations between gene expression profiles. In most microarray data analyses, however, ...

متن کامل

Adaptive Neural Network Method for Consensus Tracking of High-Order Mimo Nonlinear Multi-Agent Systems

This paper is concerned with the consensus tracking problem of high order MIMO nonlinear multi-agent systems. The agents must follow a leader node in presence of unknown dynamics and uncertain external disturbances. The communication network topology of agents is assumed to be a fixed undirected graph. A distributed adaptive control method is proposed to solve the consensus problem utilizing re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016